Data Driven Approach To Characterize And Forecast The Impact Of Work Zones On Freeway Mobility Using Probe Vehicle Data

By:

Mohsen Kamyab, PhD

Intelligent Transportation Systems

September 2020

Presentation Overview

- 1. Introduction & Motivation
 - Why should we care about work zone impact on mobility?
- 2. Objectives
 - Can we improve our traffic operation and reduce the impact?
- 3. Methodology
 - Introducing a data drive approach to characterize and forecast

- the impact.
- 4. Results & Conclusion

Motivation: Federal Highway Administration (FHWA) Calls For Improvement In Work Zone Mobility Management

FHWA calls for

transportation agencies to:

- Develop policies to manage work zone mobility
- Develop systematic

 approaches for mobility
 performance measurement
- Update and refine policies to
 optimize mobility performance

FHWA Policy development and implementation process

Source: Implementing the Rule on Work Zone Safety and Mobility, FHWA, 2005.

Work Zone Traffic Management Key Concerns

Mobility:

- 24% of nonrecurring freeway delays are due to work zone projects
- 888 million hours were lost in 2014
- User dissatisfaction

Environment:

- Millions of gallons of fuel used annually
- Emission detrimental to public health
- On average, 300 million gallons of fuel are lost every year as a result of work zones presence.

Work Zone Traffic Management Key Concerns: Safety

Safety:

- As more work is required to maintain the roadways, more risk is introduced:
 - Commuter's safety
 - Worker's Safety

National Level

2018 Michigan

Source: workzonesafety.org

Source: FHWA

Specific Research Objectives

6

The specific objectives of this study were to:

- Develop a systematic approach to measure and visualize the impact of work zones
- Predict the impact future work
 zones will have on interstate's
 mobility
- 3. Develop a high-level decisionmaking process to better plan future work zones

WAYNE STATE

Research Overview

Probe Vehicle Data Introduction

- GPS devices broadcast microwave signals
- GPS receivers collect this data to determine location and time
- Using location and time, probe's speed is derived

8

UNIVERSITY

ATE

Probe Vehicle Data Usage In Navigation Systems

Morning Rush Hour

Off-peak Hour

Source: https://www.google.com/maps

9

Probe Vehicle Data Overview

10

Mobility Performance Measurement Framework

Highway Segments Selection

Upstream Area:

5 miles prior to work zone start mile marker

Work Zone Area:

Segments falling between work zone start and end mile markers

Downstream Area:

3 miles after work zone end mile marker

Delay Measurement

Work zone VS typical traffic

condition:

- Provides realistic delay measurement
- Account for corridors that are congested even when work zone is not present

Queue Measurement

Using probe vehicle data:

- Segments with queueing condition (speed less than 15 mph) can be identified.
- Queue propagation to the upstream segments can be tracked.

Proposed Performance Measures

	Metric	What does it Measure?			
User Delay	Total Delay	Cumulative travel time delay experienced by users throughout the lane-closure duration			
	Longest User Delay	Longest travel time delay experienced by users			
Presence of Queueing Condition	Longest Queue Length (mile)	Longest length of queue caused by lane-closure			
	Longest Queue Duration (min)	Longest time that at least one segment of highway was performing in queueing condition.			
	Total Queue Duration(hours)	Cumulative times that at least one segment of highway was performing in queueing condition.			
	Number of Queues	Number of times that queueing condition formed on the highway.			

15

\\S])

Corridor-level Mobility Assessment

CDF plots

- Represents travel time variation
- Monitors travel time reliability
- Useful for high-level monitoring

Radar plot

- Summarizes traffic condition over hours of a day
- Represents aggregated traffic metrics
- Identifies problematic hours

Segment-level Mobility Assessment: Spatial Assessment

17

Volcano plot

- Summarizes traffic condition for each segment
- Represents cumulative
 traffic measures
- Identifies problematic segments
- Useful for high-level monitoring

WAYNE STATE

Spatiotemporal Mobility Assessment Using Speed Heat-map

Work Zone Mobility Audit Tool

20

Inputs

Select

WZMA Software is built to:

- 1. Utilizes probe vehicle data and work zone configuration information as an input
- 2. Automatically creates WZMA forindividual or multiple work zones3. Archives the mobility statisticalsummary for further mobility assessment

Select fro	վող	issessment					Select Work	Zone
77914 Show 5	• entries					S	Gearch:	
wz_id	tmc	count	x 🗄	id 🕴	shrt_desc	road 🕴	alt_roadname	cat
77914	108- 04413,108N04413,108 04412,108N04412,108 04411,108N04411,108 04410,108N04410,108 04409,108N04409,108 04408	*	19516	NPMRDS_MI_44165	Kent County	1-96		shou

Work Zone Mobility Audit Tool Overview

End Mile Marker

 \mathbf{NSD}

21

WAYNE STATE

Mobility Forecasting Using Machine Learning

Work Zone Mobility Forecasting Objectives

- Objective was to learn
 from historical work zones
 and predict mobility for
 future work zones.
- Can we predict speed for each segment throughout work zone presence?

Speed heatmap for a single-lane closure

Using Historical Speed Distribution To Predict Work Zone Mobility

- Historical speed distribution represents variation of mobility behavior
- Using this variation, corridor's vulnerability is characterized

 This helps algorithms to better predict work zone impact

How To Train Machine Learning Algorithms?

\\SD

27

WAYNE STATE

Case Studies For Prediction Purposes

- 1,160 work zone projects occurring on
 Michigan Interstates from 2014 to 2017
- Including single-lane and double-lane closures
- Lane-closures were in place at least for one day to maximum 15 days

Mobility Prediction Using Classification Algorithms

WAYNE STATE

How To Preprocess The Data To Improve Prediction Performance?

- Interstate speed data set is highly imbalanced.
- Far more high-speed records were present compared to low-speed records
- This can confuse training algorithms to predict records from minority classes

Resampling Techniques To Balance The Dataset

31

Algorithms used to resample data:

- Random Under Sampling
- SMOTE: Synthetic Minority Over-sampling

Over-Sampling

Under-sampling

Original dataset

Over-sampling

Original dataset

Speed Heat-maps From Predicted And Actual Observation

Actual observation

Prediction

WAYN

UNIVERSITY

ATE

Artificial Neural Network Architecture

relevant elements

Model Performance Results

34

	Spood range	Evaluation Metrics					
Model	Speed range (mph)	Precision	Recall	F1-score	Balanced Accuracy		
	0-20	0.8	0.76	0.78			
	20-40	0.67	0.67	0.67			
Random	40-60	0.66	0.61	0.63	0.74		
Forest	60-80	0.94	0.95	0.94	0.74		
	Macro average	0.76	0.74	0.75			
	Micro average	0.87	0.87	0.87			
	0-20	0.78	0.84	0.81			
	20-40	0.69	0.74	0.71			
	40-60	0.67	0.65	0.66	0.70		
XGBoost	60-80	0.94	0.94	0.94	0.79		
	Macro average	0.77	0.79	0.78			
	Micro average	0.88	0.88	0.88			
	0-20	0.85	0.88	0.87			
	20-40	0.79	0.80	0.80			
	40-60	0.77	0.73	0.75	0.05		
ANN	60-80	0.95	0.96	0.96	0.85		
	Macro average	0.85	0.85	0.85			
	Micro average	0.92	0.92	0.92			

Source: https://en.wikipedia.org/wiki/Precision and recall

State-wide Mobility Assessment & Management

WMZA For Individual Work Zones

WAYNE STATE

UNIVERSITY

Single Work Zone Mobility Measurement

	Delay & LOTTR Metrics				
Stats	AM	Mid	PM	Weekend	Total
Avg Delay(min)	0.0	5.9	4.0	0.2	0.1
Max Delay(min)	5.2	22.8	26.7	3.3	26.7
Total Delay(min)	183.7	3585.4	2111.4	107.3	6151.7
LOTTR	1.3	1.6	1.9	1.0	1.7

Queueing Metrics					
Stats	Queue				
Max Duration(min)	580.0				
Total Duration(min)	2895.0				
Max Length(miles)	3.3				
# of Queues	20.0				

State-wide Mobility Impact Measurement

Selected Work Zone Projects:

- 2014 638 Work Zones
- 2015 601 Work Zones
- 2016 535 Work Zones
- 2017 344 Work Zones

More than 1,700 case studies **Performance Measures**

А	В	С	D	E	F
wz_id	avg_wz_d	max_wz_o	total_wz_	avg_am_d	max_am_
88617	0.174799	108.3724	3854.192		
81678	0	91.44173	1049.92	0.18786	91.44173
86816	0.139736	86.87521	2006.634	0.002265	0.688073
86358	0.230484	86.81255	4210.739	0	0.779119
86216_2	0.139727	81.02689	2582.273	0	1.054347
89472_2	0.379282	74.29893	1374.003	0.321379	1.078125
91151	0.49243	72.56915	1438.097	0.51033	5.046449
93621	0.749222	72.33886	5423.167	0.745331	5.296123
86625	0.075759	71.53694	1700.485	0.039499	2.292144
91973	1.588364	67.28621	5098.544		
93622	0.875525	64.26964	9496.47	0.68335	7.419399

UNIVERSITY

Work Zone Case Studies

- 1,705 work zone case studies from 2014 to 2017
- Shoulder to multiple lane closures
- One to 15 days

WAYNE STATE

UNIVERSITY

Ranking Interstates Based On Mobility Impact

- Identifying interstates with the highest impact on mobility.
- More information on how different work zone categories impacted mobility.
- Useful for budget allocation and high-level planning

Significant Projects?

Ranking Work Zones Using Pareto Principle

- Determines 20% of work zones which accounted for 80% of the overall impact.
- These projects can be considered "significant" projects.
- Agencies could prioritize these work zones to improve their mobility management.

Work Zone Mobility Dashboard

WAYN

UNIVERSITY

TATE

Impact Distribution

\\S|)

Pareto sort: significant projects

Work Zone Mobility Dashboard

Pareto sort: significant projects

Impact Distribution

WAYN

UNIVERSITY

TATE

Making Decisions Based On Data!

Research questions:

• What is the relationship between work zone characteristics

and its impact on mobility?

- Which work zone strategies work more efficiently?
- What are significant factors effecting mobility performance?
- Can we develop decision rules based on data?

ATE

Statistical Analysis: Chi-squared Automatic Interaction Detection

- What is the relationship between dependent and independent variables?
- Used CHAID, Chi-squared
 Automatic Interaction Detection, algorithm which is based on the chi-square statistics.
- Statistically significant factors were used to split data into decision trees.

Mobility Metrics (dependent variables)	Work Zone Characteristics (independent variables)
• Total Work zone delay (normalized: hour per day)	 Work zone category (shoulder to multiple lane closure) Roadway () AADT CAADT
 Total Queue duration (normalized: percent of time performing in queue condition per day) 	 Closure side (Left-closure or right-closure Duration (intermediate or long-term)
• Number of queue (normalized: per day)	 Day of week (work zone starts) Day of week (work zone ends) Month of year
	T WAYNE STATE

Decision-making Based On The Delay Metric

Decision-making Based On The Queue Frequency Metric

Findings & Conclusion

Provided Methodologies To Address The FHWA Call

Work Zone Mobility Audit Framework

Link to the "Auditing Work Zone Mobility Using Probe Vehicle Data" document

Link: https://www.workzonesafety.org/publication/auditing-work-zone-mobility-using-probe-vehicle-data/

To access to the source code of the WZMA tool on GitHub:

Link: <u>https://github.com/WSUTRG/WorkZone_Mobility_Audit</u>

Auditing Work Zone Mobility Using Probe Vehicle Data

February 2020

Prepared for: United States Department of Transportation Federal Highway Administration Washington, DC 20590

U.S. Department of Transportation Federal Highway Administration

Prepared by: Wayne State University Transportation Research Group Detroit, MI 48202

Resources

- 1. FHWA Work Zone Data Initiative: <u>https://ops.fhwa.dot.gov/publications/fhwahop18083/index.htm</u>
- 2. FHWA Work Zone Data Exchange: <u>https://www.transportation.gov/av/data/wzdx</u>
- Kamyab, M., Remias, S., Najmi, E., Hood, K., Al-Akshar, M., & Ustun, I. (2019). Evaluation of interstate work zone mobility using probe vehicle data and machine learning techniques. *Transportation research record*, 2673(2), 811-822. <u>https://journals.sagepub.com/doi/abs/10.1177/0361198119827936</u>
- Kamyab, M., Remias, S., Najmi, E., Waddell, J., & Rabinia Haratbar, S. (2020). Machine Learning Approach to Forecast Work Zone Mobility using Probe Vehicle Data. *Transportation Research Record.* <u>https://journals.sagepub.com/doi/abs/10.1177/0361198120927401</u>

Thank you

ork Zone T

WAYNE STATE

UNIVERSITY